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Abstract
Scaling properties of Chirikov’s standard map are investigated by studying the
average value of I 2, where I is the action variable, for initial conditions in (a)
the stability island and (b) the chaotic component. Scaling behavior appears
in three regimes, defined by the value of the control parameter K: (i) the
integrable to non-integrable transition (K ≈ 0) and K < Kc (Kc ≈ 0.9716);
(ii) the transition from limited to unlimited growth of I 2,K � Kc; (iii) the
regime of strong nonlinearity, K � Kc. Our scaling results are also applicable
to Pustylnikov’s bouncer model, since it is globally equivalent to the standard
map. We also describe the scaling properties of a stochastic version of the
standard map, which exhibits unlimited growth of I 2 even for small values
of K.

PACS numbers: 05.45.−a, 05.45.Pq, 05.45.Tp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In an attempt to understand the generation of cosmic rays, Fermi [1] proposed a mechanism
in which charged particles are accelerated by time-dependent magnetic fields. Since this
seminal work, the original model has been modified and investigated in the context of diverse
applications. In the Fermi–Ulam model [2, 3] for example, a particle bounces between two
rigid walls, one of which oscillates while the other is fixed. Another version of Fermi’s model,
in which a bouncing ball, under a gravitational acceleration g, strikes an oscillating platform,
was introduced by Pustylnikov [4]. This model, also known as a bouncer model, shows
unlimited energy growth for certain parameter and initial condition values [4, 5]. Lichtenberg
[6] showed that Pustylnikov’s bouncer model is equivalent, under a suitable transformation
of variables, to the standard map introduced by Chirikov [7]. The quantum versions of the
Fermi–Ulam and bouncer models have also been investigated [8–11]. These one-dimensional

1751-8113/07/3811467+17$30.00 © 2007 IOP Publishing Ltd Printed in the UK 11467

http://dx.doi.org/10.1088/1751-8113/40/38/003
mailto:dgl@fisica.ufmg.br
mailto:jaff@fisica.ufmg.br
http://stacks.iop.org/JPhysA/40/11467


11468 D G Ladeira and J K L da Silva

models also allow direct comparison of theoretical predictions with experimental results
[12, 13]. A recent review [5] covering all these topics was recently published.

The standard map is a dynamical system in the pair of variables I (action) and θ (the
conjugate angle variable). The nonlinearity of the dynamics is controlled by a parameter K.
If K is small enough, the phase space is characterized by a mixed structure, composed of
KAM (Kolmogorov–Arnold–Moser) islands, regions of chaotic motion and spanning curves,
which limit the orbits in the phase space. Consistent with the KAM theorem, however, above
a critical value Kc ≈ 0.9716, all the spanning curves of the standard map are destroyed. Thus
for K > Kc the quantity I 2 can grow, on average, without limit. (Unlimited growth of I 2

corresponds to Fermi acceleration in Pustylnikov’s bouncer model.) Given the equivalence
between the bouncer model and the standard map, it is natural to regard I 2 as the dimensionless
particle energy. Since the scaling approach is a useful formalism for characterizing asymptotic
properties, we study here the scaling properties of the energy in the standard map for regular
and chaotic initial conditions.

Nonlinear systems such as the Fermi–Ulam model [14–16], time-dependent potential
wells [17–19] and, recently, a version of a waveguide [20] are examples of dynamical models
whose scaling properties have been investigated near the integrable to non-integrable transition.
It is interesting to note that the average quantities characterizing the chaotic low energy regions
of these models have the same exponents. So, it is legitimate to ask if Pustylnikov’s bouncer
model has also the same exponents near this transition. Here, we investigate the scaling
features of the standard map in three regimes, characterized by different ranges of the control
parameter K, namely (i) the transition from integrable to non-integrable (K ≈ 0) and K < Kc,
(ii) the transition from limited orbits in phase space to unlimited energy growth, in the regime
of intermediate nonlinearity, K � Kc, and (iii) the strongly nonlinear regime, K � Kc. We
also derive analytically the scaling exponents of a stochastic version of the standard map,
which exhibits, even for small values of K, unlimited growth of the variable I 2.

The paper is organized as follows. In section 2 we describe Pustylnikov’s bouncer model
and, briefly, present the equivalence between the bouncer model and the standard map, due to
Lichenberg, and define the average quantities I 2 and I 2. In section 3, we discuss the scaling
description in the limit of small K. In sections 4 and 5 we turn, respectively, to the scaling
properties of I 2 when K � Kc and K � Kc. In section 6 we analyze a stochastic version
of the standard map, whose scaling relations are derived analytically. Finally we present, in
section 7, a summary of the results and our conclusions.

2. Pustylnikov’s bouncer model and the standard map

The bouncer model consists of a classical particle moving in one dimension and subject to
gravitational acceleration g, which makes collisions with an oscillating platform. The position
y of this platform oscillates with amplitude ε and frequency ω, i.e. y = ε cos(ωt + φ0), where
φ0 is an initial phase and t is the time. In the simplified bouncer model, the platform is assumed
fixed but the momentum transfer occurs as if it were moving. If vn is the velocity of the particle
and ωtn + φ0 is the phase of the oscillating wall immediately after the nth impact, then, in
terms of the new and dimensionless variables Vn = ωvn/g and φn = ωtn + φ0, the dynamics
of the simplified bouncer model is given by the two-dimensional map:

T :

{
Vn+1 = |Vn − 2ε sin φn+1|,
φn+1 = φn + 2Vn mod 2π,

where the dimensionless parameter ε = εω2/g is the ratio of the maximum wall acceleration to
the gravitational acceleration. The absolute value is required here because negative velocities
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are forbidden in the simplified version. Lichtenberg [6] showed that under the transformation
of variables In = 2Vn,K = 4ε and θn = φn+1 + π , Pustylnikov’s bouncer model is globally
equivalent to the standard map with action I and conjugate angle θ . The standard map is
defined by

Ts :

{
In+1 = In + K sin θn,

θn+1 = θn + In+1 mod 2π.
(1)

Although the simplified bouncer model differs from the standard map (the evolution of Vn

involves the absolute value), the principal dynamic properties of the standard map, such as the
transitions from integrable to non-integrable motion and from bounded to unbounded values
of I, are not affected by introducing the absolute value. (The latter affects only the small-I
regime.) We may therefore gain insight from the scaling properties of the standard map. Given
the relation between variables I and V , it follows that I 2 is proportional to the dimensionless
particle energy in the bouncer model.

For small values of K (K � Kc), the phase space of the standard map basically consists
of elliptic fixed points surrounded by islands of regular motion. The chaotic regions are very
small and occur near separatrices that are isolated. As long as K is larger than Kc, the last
spanning curve (separatrix) between the period-1 and period-2 islands disappears and the
system presents a global chaotic component. Now, initial conditions in the chaotic sea present
unlimited average energy growth due to the diffusion in the stochastic region. These points
present Fermi acceleration according to Ulam’s point of view. When K � Kc, the chaotic
component surrounds small regions of regular motion. It is worth mentioning that the size
of these regions decreases rapidly as K grows. Since we want to study the bouncer model,
we consider that the action is not modulo 2π . However, for the standard map, it is natural
to define I as modulo 2π (see equation (1) for θn+1). This implies that fixed point equations
(K sin(θ) = 2πl, I = 2πm) admit windows of values for successively large values of K in
which the solutions are stable. This discussion can be generalized to m > 1 fixed points.
However, for the standard map defined in equation (1) these periodic orbits do not exist and
the windows of the parameter where stable motion was observed now furnish the values of
K for which the action grows unlimitedly. The period-1 orbits, for example, are replaced by
accelerator modes characterized by unlimited growth of the action as In = I + 2πln. Because
it is not a stable motion, this kind of movement is usually called as regular. It follows that the
ensemble of these orbits and their neighborhoods also presents unlimited growth of the energy
(Fermi acceleration in the sense of Pustylnikov) [2, 4–7, 11, 21].

Prior to discussing the scaling properties of the standard map, it is convenient to define
the average quantities of interest. We define the average squared action variable over the orbit
associated with an initial condition j as

〈
I 2
n,j

〉 = 1

n + 1

n∑
i=0

I 2
i,j , (2)

where i refers to the ith iteration of the map. We then define an average over M independent
realizations of the map, characterized by randomly chosen values of θ0:

I 2(n,K, I0) = 1

M

M∑
j=1

〈
I 2
n,j

〉
. (3)

We are also interested in the ensemble average of the energy evaluated at iteration n, namely

I 2(n,K, I0) = 1

M

M∑
j=1

I 2
n,j . (4)
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Figure 1. (a) I 2 versus n for the standard map in the weakly nonlinear regime, for control parameter
K and initial values I0 as indicated. The results represent averages over M = 103 realizations. (b)
Scaling plot, I 2/l versus nla , where l = K−1/b , demonstrating collapse of the curves in (a) onto
universal curves. The initial conditions are inside a stability island.

In this work, we study the scaling properties of I 2 and I 2 that are related to corresponding
particle energy averages in Pustylnikov’s bouncer model.

3. Weakly nonlinear regime

Let us first discuss scaling in the weakly nonlinear regime. As is clear from equation (1),
if K ≈ 0 the system is near the integrable to non-integrable transition. In this regime, the
period-1 and -2 fixed points are separated by invariant spanning curves, and we can have two
kinds of initial conditions: (a) points inside a stability island and (b) points in the chaotic
component near the first separatrix. Let us first study case (a).

For I0 � K, I 2 grows with n, but saturates at a finite limiting value for n � 1, as is
shown in figure 1(a). We can define a crossover value nx , at which I 2 switches from the
growth regime to its limiting value.

For I0 � K , (figure 1(a)), we find I 2 ≈ I 2
0 , for small n; I 2 subsequently grows and

approaches the behavior observed for I0 � K . Thus, the asymptotic value of I 2 is independent
of its initial value. In the case I0 � K , we can identify two crossover values, n′

x and n′′
x ,

at which the behavior of I 2 changes. The first, n′
x , characterizes the change from the initial
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regime of constant I 2 to the growth regime; the second, n′′
x , marks the change from the growth

regime to saturation. Moreover, for a given value of K, figure 1(a) shows that n′′
x ≈ nx .

In the limit I0 ≈ 0, we can describe, for n � nx , the initial growth of I 2 as

I 2(n,K, 0) ∝ nαKβ, (5)

where α is the growth exponent and β is the exponent that governs the K-dependence for small
values of n. In the limit n � nx , for which the I 2 curves saturate, we can write

I 2
sat ∝ Kγ , (6)

where γ is the saturation exponent. Moreover, we can define the dynamic exponent z by
expressing the crossover iteration number nx as a function of the parameter K as

nx ∝ Kz. (7)

We are now ready to formally express the scaling relations for I 2. Since I 2 is a function of
n,K and I0, we can write

I 2(n,K, I0) = lI 2(lan, lbK, lcI0), (8)

where l is the scale factor and a, b and c are scaling exponents. Choosing l = K−1/b, the
above equation can be written as

I 2(n,K, I0) = K−1/bf (K−a/bn,K−c/bI0), (9)

where f = I 2(K−a/bn, 1,K−c/bI0) is assumed to be constant for n � nx . Then, comparing
equations (6) and (9), we observe that γ = −1/b. Setting l = n−1/a , equation (8) implies

I 2(n,K, I0) = n−1/ag(n−b/aK, n−c/aI0)

= n−(1+by)/aKyh(n−c/aI0), (10)

where g = I 2(1, n−b/aK, n−c/aI0). In the limit I0 � K the function h is assumed to be
constant, and for small values of n, we can conclude, from equations (5) and (10), that α =
−(1 + by)/a and β = y. The exponent c can be obtained from the relation I 2/K = constant.
Defining K ′ = lbK and I ′

0 = lcI0 we can write I 2/K = I ′2/K ′ = (lcI0)
2/lbK and, therefore,

obtain c = b/2. From equation (9), the crossover nx scales with K as

nx ≈ Ka/b. (11)

From this last equation and equation (7), we obtain z = a/b.
We determine α via a fit to the initial growth regime of each I 2 curve; using K in the

interval [10−6, 10−2], we obtain α = 1.91 ± 0.01. The exponent β in equation (5) gives the
dependence of the initial growth of I 2 on K. Therefore, β can be determined by a best fit to
the data for n � nx , in a plot of I 2/nα versus K on logarithmic scales. This procedure, shown
in figure 2(a), yields β = 2.012 ± 0.005.

The dynamic exponent z is similarly obtained from a fit to the data in a plot of nx versus
K; this furnishes z = −0.505 ± 0.006, as is shown in figure 2(b). Knowing the values of
exponents α, β and z, we can obtain the values of all other exponents. The scaling exponents
are a = 0.48 ± 0.02, b = a/z = −0.95 ± 0.05 and c = b/2 = −0.48 ± 0.03. The saturation
exponent is γ = −1/b = 1.06 ± 0.06. With these exponents, we can choose l = K−1/b and,
applying the scale transformations n → nla and I 2 → I 2/l, we obtain the collapse of the
I 2 curves onto a universal one. These transformations are illustrated in figure 1(b), for both
I0 � K and I0 � K .

It is also possible to determine the initial growth of I 2 analytically for small θ0 and
K � Kc. Noting that I0 ≈ 0 for nK � 1, the sine in equation (1) can be expanded to the first
order to yield In ≈ nKθ0 or I 2

n ∝ n2K2, describing the behavior of I 2 for I0 � K � Kc.
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Figure 2. (a) Log–log plot of I 2/nα versus K for n � nx . A least-squares linear fit yields β ≈ 2.
(b) Crossover number nx versus K. The best fit gives z = −0.505 ± 0.006. The initial conditions
are inside a stability island.

We also study the behavior of I 2 for the regular initial conditions when K ∈ [0.1, 0.9].
It turns out that I 2 shows a scaling behavior with the exponents a and b equal as the ones
obtained for K ≈ 0. However, the exponent c cannot be obtained because the regime I0 � K

is not reachable.
To study the behavior of initial conditions in the chaotic region (case (b)), we must deal

with the small size of this region. In fact for K ≈ 0 it is very hard to observe numerically this
region. Since the scaling behavior of I 2 for the initial conditions inside the stability island
is valid for K ∈ [10−6, 0.9], it is legitimate to study the behavior of the chaotic points for
K ∈ [0.1, 0.9]. In this interval for K, the chaotic region has enough separated points to allow
good simulations. It is possible that the obtained scaling be valid for K ≈ 0. From figure 3(a)
and from a similar plot of the crossover, we obtain that γ = 1.72±0.04 and z = −1.43±0.08.
Thus, it follows that the scaling exponents are a = 0.83 ± 0.06 and b = −0.58 ± 0.01. These
exponents are used to collapse I 2 versus n curves onto a universal one, as is shown for a
particular case in figure 3(b). We must observe that the collapse for small K is not very good
because the chaotic region is very small and it furnishes only initial conditions that are all
close to each other. To obtain the exponent c, we need that I0 � K . This condition cannot be
satisfied because K is too large and an appropriate I0 would be above the saturation Isat. We
must also observe that we are not able to obtain the α exponent because the growth regime is
very small (only one order of magnitude in the variable n).
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Figure 3. (a) Log–log plot of I 2
sat versus K. The initial conditions are near the first separatrix

(chaotic region). A least-squares linear fit yields γ = 1.72 ± 0.04. (b) Log–log scaling plot, I 2/l

versus nla , where l = K−1/b , demonstrating the collapse of two curves onto a universal one.

4. Moderately nonlinear regime

The moderately nonlinear regime corresponds to K � Kc. (Kc � 0.9716 is the critical value,
at which the last spanning curve between the period-1 and period-2 fixed points is destroyed.)
For initial points inside the first island, I 2 grows for small n and reaches a constant value. On
the other hand, for initial points in the chaotic component, this regime marks the transition
from saturation to unlimited growth of I 2 due to diffusion in the stochastic region [11]. We
define Kr = K − Kc and study the scaling properties of I 2 for Kr � 0. In this regime, I 2

grows slowly for small n and crosses over to a more rapid growth for n > nx (figure 4(a)).
Evidently, I 2 grows without limit as n → ∞.

We find that the crossover iteration number, nx , diverges as Kr → 0, following

nx ∝ Kz
r . (12)

A least-squares best fit to the data (figure 5(a)) yields z = −2.99 ± 0.09.
In the limit n � nx , the growth of I 2 is described by

I 2 ∝ nαKβ
r . (13)

Fitting the data (an average over 11 realizations) in this regime, with Kr ∈ [8.4 ×
10−3, 1.284 × 10−1] we obtain α = 0.99 ± 0.03 ≈ 1. The value of β can be obtained directly
by fitting I 2/n versus Kr on the log scale; this furnishes β = 3.06 ± 0.05 ≈ 3 (figure 5(b)).
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Figure 4. (a) I 2 versus n for K � Kc , when the initial conditions belong to the chaotic component.
(The data represent averages over 103 independent realizations.) (b) Collapse of the I 2 data shown
in (a) onto a universal curve.

Thus the asymptotic growth of I 2, for K � Kc, is well described by I 2 ∝ nK3
r . Formally, the

scaling relation of I 2 in the regime K � Kc can be written as

I 2(n,Kr) = lI 2(lan, lbKr). (14)

Letting l = K
−1/b
r , this becomes

I 2(n,Kr) = K−1/b
r f

(
K−a/b

r n
)
, (15)

which in turn implies that the crossover number follows nx ∝ K
a/b
r . Thus, from

equation (12), we have z = a/b. Equation (15) can be written as

I 2(n,Kr) ∝ K−1/b
r

(
K−a/b

r n
)x

. (16)

Turning to the limit n � nx we find, from the above equation and equation (13), that x = α

and −1/b = zα + β. Now letting l = n−1/a , equation (14) yields

I 2(n,Kr) = n−1/af (n−b/aKr)

= n−1/a(n−b/aKr)
y (17)

and, from equation (13), we have that y = β and −1/a = α + β/z. Since α ≈ 1, z ≈ −3
and β ≈ 3, we obtain that −1/a = α + β/z = 0 and −1/b = zα + β = 0. Therefore the
exponents a and b diverge but their ratio is finite, since z = a/b ≈ −3. Therefore if we choose
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Figure 5. (a) Crossover iteration number nx versus Kr = K − Kc for K � Kc . The best fit to the
data furnishes z = −2.99 ± 0.09. (b) I 2/n versus Kr . The best fit gives β = 3.06 ± 0.05.

l = K
−1/b
r we have l ≈ 1, nla = nK−z

r and the rescaled I 2 data collapse in the large-n limit,
as is shown in figure 4(b).

Figure 6 shows the behavior of I 2 (see equation (4)). Except for initial oscillations, the
overall behavior is the same as that of I 2 (see figure 4). In particular, the scaling exponents
for the two kinds of average are the same.

5. Strongly nonlinear regime

The third scaling regime is characterized by K � Kc. In this limit, all the spanning curves
between the period-1 and period-2 fixed points have disappeared and the stochastic component
spreads all over the phase space. Moreover, unlimited growth of I is observed in some
regions of regular motion in the phase space for arbitrary values of K [4]. The condition
4sπ � K < 4

√
1 + (sπ)2, where s = l/2 and l is an integer, furnishes the intervals of K

for which the most simple kind of regular growth of the action is observed [5, 7, 21]. For
each of these regular regions there is a fixed value of θ for which the variable action increases
unlimitedly as In = 2πm+2πln,m being an integer. Orbits characterized by unlimited growth
of the action are also observed near enough to these trajectories. The first nontrivial motion
characterized by a regular increase of the action is obtained for l = 1 and m = 1. Thus, the
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Figure 6. (a) I 2 versus n for K � Kc , when the initial conditions belong to the chaotic component.
(The data represent averages over 103 independent realizations.) (b) Collapse of the I 2 data shown
in (a) onto a universal curve.

first accelerator mode occurs for K > 2π . Similarly, accelerator modes of regular motion
are observed for arbitrary values of K. Windows of K for other kinds of regular motion are
also observed for arbitrary values of the parameter. Although there is a large number of such
regions of regular motion, the size of these accelerator modes decreases rapidly as K grows
[7]. Now an unlimited growth of the energy appears for initial points inside (a) the stochastic
component and (b) the regions of regular dynamics.

Performing averages over 103 realizations, characterized by randomly chosen values of
θ0 and different values of I0 belonging to the chaotic component, we again considered the
average quantity I 2 defined in equation (3). Figure 7(a) shows I 2 for two K values satisfying
K � Kc, for both I0 � K and I0 � K . If I0 � K , then I 2 grows in a power-law fashion
and does not depend on the initial value I0. Considering first the case I0 � K , we have

I 2 ∝ nαKβ, (18)

where α is the growth exponent and β gives the dependence of I 2 on K. Performing nonlinear
fits for values of K ∈ [101, 105] we obtain α = 0.999 ± 0.001 ≈ 1 and, from a plot of I 2/n

versus K, we find β = 2.02 ± 0.02 ≈ 2 (figure 8(a)).
Turning to the regime I0 � K , we see that there is, for each I 2 curve, a crossover number,

n = nx , prior to which I 2 is essentially constant,
(
I 2 ≈ I 2

0

)
, and after which I 2 grows. We

also note that, for large values of n, the value of I 2 does not depend on I0, for both I0 � K
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Figure 7. (a) Log–log plot of I 2 versus n for K � Kc . (b) Collapse of the data shown in (a)
under the scaling transformation.

and I0 � K . As is evident in figure 7(a), the crossover number, nx , depends on both I0 and
K. We may write

nx ∝ I
z1
0 Kz2 , (19)

where z1 and z2 are dynamic exponents. Plotting nx as a function of I0, we obtain
z1 = 1.98 ± 0.02 from the best fit. Similarly, a plot of nx versus K furnishes z2 = −1.98 ± 0.02
(figures 8(b), (c)). In figure 8(b), K = 103 is the same in all the studies, while in figure 8(c),
I0 is fixed at I0 = 106.

It is useful to define a scaling variable nKx , in terms of which we shall describe the
behavior of I 2. Given the values of α and β, the exponent x can be determined from
equation (18) and the scaling properties of I 2. Thus, considering I 2 as a function of nKx and
I0, we have

I 2(nKx, I0) = lI 2(ldnKx, leI0), (20)

where d and e are scaling exponents and l is a scaling factor. Setting l = (nKx)−1/d yields

I 2(nKx, I0) = (nKx)−1/df ((nKx)−e/dI0)

∝ (nKx)−1/d [(nKx)−e/dI0]y. (21)

For n � nx we see that I 2 does not depend on I0 and, therefore, y = 0 in the above equation.
Thus, from equation (18), we observe that −1/d = α and −x/d = αx = β. For n � nx we
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Figure 8. Log–log plot of I 2/n versus K. The best fit to the data furnishes β = 2.02 ± 0.02. (b),
(c) Plots of the crossover number nx as a function of I0 and K. In (b) K = 103; in (c) I0 = 106.

have that, if I0 � K , then y = 0 in equation (21). However, if I0 � K , then y = 2 and, since
in this limit I 2 does not depend on n or K, we also have that e = −1/2. As α = 0.999±0.001
and β = 2.02 ± 0.02, we have x = β/α = 2.02 ± 0.02 and d = −1/α = −1.001 ± 0.001.
Letting l = I

−1/e

0 , equation (20) becomes

I 2(nKx, I0) = I
−1/e

0 g
(
I

−d/e

0 nKx
)
. (22)
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Figure 9. (a) Log–log plot of I 2 for K � Kc and (b) the collapse of the curves in (a) onto a
universal curve is obtained with the same exponents of collapse for I 2.

From this relation, we have nx ≈ I
d/e

0

/
Kx . In terms of the exponents α and β, this can be

written as

nx ≈
(

I 2
0

Kβ

)1/α

. (23)

Since 2/α = 2.002 ± 0.002 and β/α = 2.02 ± 0.02, we can compare equations (19) and (23)
and, considering the uncertainties, we have that z1 ≈ 2/α and z2 ≈ −β/α respectively. Thus,
performing the scaling transformations I 2 → I 2/l and n → l−1/αnKβ/α , with l = I

−1/e

0 = I 2
0 ,

we collapse all the I 2 curves, as is shown in figure 7(b).
The behavior of I 2 for two values of K is displayed in figure 9(a). The collapse of these

curves onto a universal curve, as is displayed in figure 9(b), by using the same set of exponents
of the collapse for I 2 (see figure 7) shows that both averages have the same scaling behavior.

6. Stochastic version of the standard map

Study of stochastic versions of Fermi-like models began with Hammersley’s work [22] on
the Fermi–Ulam model, in which a bouncing particle is confined between two walls, one
of which is fixed and the other moving randomly. In the stochastic Fermi–Ulam model, the
average particle energy grows without limit. Recently, Karlis et al [23] studied a version of the
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Fermi–Ulam model with stochastic momentum transfer between the particle and either wall.
In this section we study a map in which the angle θn does not evolve as in equation (1), but is
given, independently at each iteration by a random variable uniformly distributed on [0, 2π ).
This random shift can be interpreted as an irregular interaction of a particle with a thermal
bath. For a given realization j , we evaluate the action variable according to the map (1),
with θn random, yielding

In,j = I0,j + K

n−1∑
k=0

sin θk. (24)

Evaluating the mean-square action variable, we have

〈
I 2
n,j

〉 = 1

n + 1


(n + 1)I 2

0 + 2KI0

n−1∑
k=0

(n − k) sin θk + K2
n−1∑
k=0

(
k∑

k′=0

sin θk′

)2

 . (25)

Now consider the average of I 2 over a sample of M realizations, as defined in equation (3).
Since the θ values are independent and uniformly distributed on [0, 2π), the mean of sin θk is
zero while that of sin2 θk is 1/2. Thus, imposing the same initial value I0 for all M realizations,
we have

I 2 = I 2
0 +

K2

4
n. (26)

As before, I 2 ∝ n corresponds to unlimited energy growth, or Fermi acceleration, in
Pustylnikov’s bouncer model. Figure 10(a) shows I 2 as given by equation (26) for several
values of K and I0. For I0 � Kc, I

2 is essentially constant for n < nx , and approaches
the corresponding I 2 curve (for I0 � Kc and the same value of K), thereafter. It is worth
mentioning that the numerical results agree very well with the analytical ones.

For n � nx , equation (26) implies I 2 ≈ I 2
0 . In the opposite limit (n � nx), we have

I 2 ≈ K2n/4. Therefore, the crossover number nx obeys

nx ≈ 4

(
I0

K

)2

. (27)

In terms of the scaling variable nK2, the scaling function for I 2 is formally written as

I 2(nK2, I0) = lI 2(ldnK2, leI0). (28)

Setting l = (nK2)−1/d , the above equation can be rewritten as

I 2(nK2, I0) = (nK2)−1/df ((nK2)−e/dI0). (29)

For n � nx , the function f = I 2(1, (nK2)−e/dI0) is constant and, from equation (26), we
have −1/d = 1 or d = −1. Letting l = I

−1/e

0 , equation (28) implies

I 2(nK2, I0) = I
−1/e

0 g
(
I

−d/e

0 nK2
)
. (30)

From this relation, we have

nx ≈ I
d/e

0

/
K2. (31)

This relation and equation (27) therefore imply d/e = 2 and, thus, e = −1/2. Figure 10(b)
confirms that, by appropriate scaling transformations, the data for I 2 displayed in figure 10(a)
collapse onto a single, universal curve.
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Figure 10. I 2 versus n for the stochastic standard map. (a) Analytical result, equation (26), for K
and I0 as indicated and (b) data collapse under scaling transformation.

7. Summary and conclusions

We have investigated the scaling properties of Chirikov’s standard map [7]. Since, as shown
by Lichenberg [6], the standard map is equivalent to Pustylnikov’s bouncer model [4], our
results are applicable to the latter as well. We analyzed the energy by taking two kinds of
averages: (i) an average only over the ensemble of initial θ(I 2) and (ii) an average along an
orbit followed by the ensemble average (I 2). I 2 and I 2 have the same scaling behavior.

For K ≈ 0 we studied the scaling properties of I 2 near the integrable to non-integrable
transition for initial points in the stability island. This scaling description is valid even
for K ∈ [10−6, 0.9]. When the initial conditions were near the first separatrix (chaotic
component), we were able to obtain a scaling description only for K ∈ [0.1, 0.9]. When
K ≈ 0 we had numerical problems related to the small size of the chaotic region. However, it
is possible that the obtained exponents be valid in this limit. We emphasize that all obtained
exponents are different from those characterizing the integrable to non-integrable transition
of the Fermi–Ulam model. The different sets of exponents reflect their different transitions.
For low energies, the phase space of the Fermi–Ulam model is essentially chaotic while the
standard map presents a stability island with a chaotic layer.

For K � Kc we described, by scaling analyses, the transition from limited to unlimited
growth of I 2 for initial points in the chaotic component, or transition to unbounded energy
gain, the so-called Fermi acceleration phenomena, in Pustylnikov’s bouncer model. We also
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Table 1. Summary of the scaling description of the standard map. Note that K† is given by
K† = Kr for K � Kc and K† = K for the other cases. The initial conditions belong to regular
motion (first case) and to the chaotic component (other cases).

Growth
Scaling Scaling regime

Regime variables exponents I 2 ∝ nαK†β

K < Kc n a = 0.48(2) n � nx

or K b = −0.95(5) α = 1.91(1)

K ≈ 0 I0 c = −0.48(3) β = 2.012(5)

(reg. i.c.)
K < Kc n a = 0.83 ± 0.06

K b = −0.58 ± 0.01
K � Kc n n � nx

Kr = K − Kc a/b = −2.99(9) α = 0.99(3)

β = 3.06(5)

K � Kc nKβ/α d = −1.001(1) n � nx

I0 e = −1/2 α = 0.999(1)

β = 2.02(2)

Stochastic nK2 d = −1 n � nx

version I0 e = −1/2 α = 1
β = 2

derived the scaling descriptions of the standard map for the regime of strong nonlinearity,
K � Kc. Moreover, we analyzed a stochastic version of the standard map, in which the
angle variable, θ , is random. In this last version the variable I 2 exhibits unlimited growth,
even for K ≈ 0. In terms of the variables of the bouncer model, this means that the particle
experiences unbounded energy gain [22]. In table 1, we summarize the main results of the
scaling description. As is shown in the final column of table 1, we find that for regular orbits in
the limit of weak nonlinearity and for small n, I 2 ∝ n2K2. For chaotic orbits, with K � Kc,
we showed for large n that I 2 ∝ nK3

r , where Kr = K − Kc, while in the limit of strong
nonlinearity, K � Kc, we have I 2 ∝ nK2. In the growth regime of the stochastic version,
I 2 ∝ nK2, similar to the deterministic version with K � Kc.

Finally, let us discuss some open points. The first one concerns the link between the
obtained scaling relations and the phase-space properties. It is clear that this link is beyond
our present analysis. However, we can make some simple comments when I0 � K . The
scaling approach is useful to characterize the chaotic component. When K � Kc, I

2 is
constant for initial points inside the first island because the energy of each point is obviously
limited. On the other hand, this average energy has a scaling behavior for points in the chaotic
region. Then, the divergence of the crossover iteration number nx can be associated with the
breaking of the last spanning curve. For K � Kc, the nx ‘time scale’ disappears because
now the phase space is almost all open and we must have a new scaling function. The second
point is related to the development of a renormalization group that can furnish the values of
the exponents. Unfortunately, we do not know how to do it yet.
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